1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
//! The **Chinese Remainder Theorem** is used to efficiently calculate a number `n` which
//! has several constraints of its modulus. Each constraint specifies the modulus and the
//! remainder, such that:
//!
//! ```text
//! n % constraints[0].modulus == constraints[0].remainder
//! n % constraints[1].modulus == constraints[1].remainder
//! ...
//! n % constraints[k].modulus == constraints[k].remainder
//! ```
//!
//! This module is adapted from the example in [Rosetta Code](https://rosettacode.org/wiki/Chinese_remainder_theorem#Rust)
use num::{integer::Integer, traits::Signed};
use std::{iter::Product, ops::AddAssign};
#[allow(clippy::many_single_char_names)]
fn egcd<N: Integer + Copy + Signed>(a: N, b: N) -> (N, N, N) {
if a.is_zero() {
(b, N::zero(), N::one())
} else {
let (g, x, y) = egcd(b % a, a);
(g, y - (b / a) * x, x)
}
}
fn mod_inv<N: Integer + Copy + Signed>(x: N, n: N) -> Option<N> {
let (g, x, _) = egcd(x, n);
if g.is_one() {
Some((x % n + n) % n)
} else {
None
}
}
/// A constraint for the calculation of the Chinese Remainder Theorem
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct Constraint<N> {
pub modulus: N,
pub remainder: N,
}
impl<N> From<(N, N)> for Constraint<N> {
/// Assumes that constraints are ordered `(modulus, remainder)`.
fn from((modulus, remainder): (N, N)) -> Constraint<N> {
Constraint { modulus, remainder }
}
}
impl<N> Constraint<N> {
pub fn new(modulus: N, remainder: N) -> Constraint<N> {
Constraint { modulus, remainder }
}
}
impl<N> Constraint<N>
where
N: Copy + Integer,
{
/// This formulation is useful when what's available is the "inverted remainder":
/// `invert_remainder == modulus - remainder`.
pub fn new_invert_remainder(modulus: N, invert_remainder: N) -> Constraint<N> {
Constraint::new(modulus, (modulus - invert_remainder) % modulus)
}
}
/// Find a number `n` which follows the supplied constraints.
///
/// These constraints are expressed such that for all `k` in `(0..constraints.len())`:
///
/// ```text
/// n % constraints[0].modulus == constraints[0].remainder
/// n % constraints[1].modulus == constraints[1].remainder
/// ...
/// n % constraints[k].modulus == constraints[k].remainder
/// ```
///
/// Returns `None` if the constraint moduli are not all coprime.
pub fn chinese_remainder<N>(constraints: &[Constraint<N>]) -> Option<N>
where
N: Integer + Copy + Product + AddAssign + Signed,
{
let product = constraints
.iter()
.map(|&constraint| constraint.modulus)
.product::<N>();
let mut sum = N::zero();
for Constraint { modulus, remainder } in constraints {
let p = product / *modulus;
sum += *remainder * mod_inv(p, *modulus)? * p;
}
Some(sum % product)
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_classic_formulation() {
let constraints = [
Constraint {
modulus: 3,
remainder: 2,
},
Constraint {
modulus: 5,
remainder: 3,
},
Constraint {
modulus: 7,
remainder: 2,
},
];
let n = chinese_remainder(&constraints).unwrap();
assert_eq!(n, 23);
}
#[test]
fn test_worked_inverted() {
let constraints = [
Constraint::new_invert_remainder(7, 0),
Constraint::new_invert_remainder(13, 1),
Constraint::new_invert_remainder(59, 4),
Constraint::new_invert_remainder(31, 6),
Constraint::new_invert_remainder(19, 7),
];
dbg!(&constraints);
let expect = 1068781;
let n = chinese_remainder(&constraints).unwrap();
dbg!(n);
for constraint in &constraints {
dbg!(
constraint.modulus,
n % constraint.modulus,
expect % constraint.modulus
);
}
assert_eq!(n, expect);
}
#[test]
fn test_worked_literals() {
let constraints = [
Constraint {
modulus: 7,
remainder: 0,
},
Constraint {
modulus: 13,
remainder: 12,
},
Constraint {
modulus: 59,
remainder: 55,
},
Constraint {
modulus: 31,
remainder: 25,
},
Constraint {
modulus: 19,
remainder: 12,
},
];
let expect = 1068781;
let n = chinese_remainder(&constraints).unwrap();
dbg!(n);
for constraint in &constraints {
dbg!(
constraint.modulus,
n % constraint.modulus,
expect % constraint.modulus
);
}
assert_eq!(n, expect);
}
#[test]
fn test_another() {
let constraints = [
Constraint::new_invert_remainder(17, 0),
Constraint::new_invert_remainder(13, 2),
Constraint::new_invert_remainder(19, 3),
];
let n = chinese_remainder(&constraints).unwrap();
for constraint in &constraints {
dbg!(constraint.modulus, n % constraint.modulus);
}
assert_eq!(n, 3417);
}
}