1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
use crate::geometry::{line_segment::LineSegment, Direction};
use itertools::Itertools;
use std::{
convert::TryFrom,
ops::{Add, AddAssign, Div, Mul, Sub, SubAssign},
};
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
pub struct Point {
pub x: i32,
pub y: i32,
}
impl Point {
#[inline]
pub const fn new(x: i32, y: i32) -> Point {
Point { x, y }
}
#[inline]
pub fn manhattan(self) -> i32 {
self.x.abs() + self.y.abs()
}
pub fn abs(&self) -> Point {
Point {
x: self.x.abs(),
y: self.y.abs(),
}
}
/// Rotate this point clockwise around the origin.
///
/// For example:
///
/// ```
/// # use aoclib::geometry::Point;
/// let mut point = Point::new(2, 1);
/// point = point.rotate_right();
/// assert_eq!(point, Point::new(1, -2));
/// point = point.rotate_right();
/// assert_eq!(point, Point::new(-2, -1));
/// point = point.rotate_right();
/// assert_eq!(point, Point::new(-1, 2));
/// point = point.rotate_right();
/// assert_eq!(point, Point::new(2, 1));
/// ```
#[inline]
pub fn rotate_right(&self) -> Point {
Point::new(self.y, -self.x)
}
/// Rotate this point counterclockwise around the origin.
///
/// For example:
///
/// ```
/// # use aoclib::geometry::Point;
/// let mut point = Point::new(2, 1);
/// point = point.rotate_left();
/// assert_eq!(point, Point::new(-1, 2));
/// point = point.rotate_left();
/// assert_eq!(point, Point::new(-2, -1));
/// point = point.rotate_left();
/// assert_eq!(point, Point::new(1, -2));
/// point = point.rotate_left();
/// assert_eq!(point, Point::new(2, 1));
/// ```
#[inline]
pub fn rotate_left(&self) -> Point {
Point::new(-self.y, self.x)
}
}
impl From<(usize, usize)> for Point {
#[inline]
fn from((x, y): (usize, usize)) -> Self {
Self::new(
i32::try_from(x).unwrap_or(i32::MAX),
i32::try_from(y).unwrap_or(i32::MAX),
)
}
}
impl AddAssign for Point {
#[inline]
fn add_assign(&mut self, other: Point) {
self.x += other.x;
self.y += other.y;
}
}
impl Add for Point {
type Output = Point;
#[inline]
fn add(mut self, other: Point) -> Point {
self += other;
self
}
}
impl AddAssign<(i32, i32)> for Point {
#[inline]
fn add_assign(&mut self, (dx, dy): (i32, i32)) {
self.x += dx;
self.y += dy;
}
}
impl Add<(i32, i32)> for Point {
type Output = Point;
#[inline]
fn add(mut self, deltas: (i32, i32)) -> Point {
self += deltas;
self
}
}
impl AddAssign<Direction> for Point {
#[inline]
fn add_assign(&mut self, direction: Direction) {
*self += direction.deltas();
}
}
impl Add<Direction> for Point {
type Output = Point;
#[inline]
fn add(mut self, direction: Direction) -> Point {
self += direction;
self
}
}
impl AddAssign<LineSegment> for Point {
#[inline]
fn add_assign(
&mut self,
LineSegment {
direction,
distance,
}: LineSegment,
) {
let (mut dx, mut dy) = direction.deltas();
dx *= distance;
dy *= distance;
*self += (dx, dy);
}
}
impl Add<LineSegment> for Point {
type Output = Point;
#[inline]
fn add(mut self, line_segment: LineSegment) -> Point {
self += line_segment;
self
}
}
impl SubAssign for Point {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
self.x -= rhs.x;
self.y -= rhs.y;
}
}
impl Sub for Point {
type Output = Point;
#[inline]
fn sub(mut self, other: Point) -> Point {
self -= other;
self
}
}
impl Mul<i32> for Point {
type Output = Point;
#[inline]
fn mul(self, other: i32) -> Point {
Point {
x: self.x * other,
y: self.y * other,
}
}
}
impl Div<i32> for Point {
type Output = Point;
#[inline]
fn div(self, other: i32) -> Point {
Point {
x: self.x / other,
y: self.y / other,
}
}
}
pub trait PointTrait: Copy + Eq {
/// Numeric type backing this point
type N;
/// Return the manhattan distance of this point from the origin.
fn manhattan(self) -> Self::N;
/// Reduce all components of this point by 1.
fn decr(self) -> Self;
/// Increase all components of this point by 1.
fn incr(self) -> Self;
/// Generate all points inclusively bounded by `min` and `max`.
fn inclusive_range(min: Self, max: Self) -> Box<dyn Iterator<Item = Self>>;
/// Iterate over points adjacent to this point.
///
/// This includes diagonals, and excludes the center.
///
/// The implementation should always return a constant number of items, even if
/// for simplicity it does not implement `ExactSizeIterator`.
fn adjacent(self) -> Box<dyn Iterator<Item = Self>>
where
Self: 'static,
{
Box::new(
Self::inclusive_range(self.decr(), self.incr()).filter(move |&point| point != self),
)
}
/// Return the boundary minimum between `self` and `other`.
///
/// This is defined as a new point with each component defined by `self.component.min(other.component)`.
fn boundary_min(self, other: Self) -> Self;
/// Return the boundary maximum between `self` and `other`.
///
/// This is defined as a new point with each component defined by `self.component.max(other.component)`.
fn boundary_max(self, other: Self) -> Self;
/// Return the volume of the space defined between this point and the origin.
fn volume<T>(self) -> T
where
T: From<Self::N> + Mul<Output = T>;
}
impl PointTrait for Point {
type N = i32;
fn manhattan(self) -> Self::N {
<Self>::manhattan(self)
}
fn decr(self) -> Self {
Point::new(self.x - 1, self.y - 1)
}
fn incr(self) -> Self {
Point::new(self.x + 1, self.y + 1)
}
fn inclusive_range(min: Self, max: Self) -> Box<dyn Iterator<Item = Self>> {
Box::new(
(min.y..=max.y)
.cartesian_product(min.x..=max.x)
.map(|(y, x)| Point::new(x, y)),
)
}
fn boundary_min(self, other: Self) -> Self {
Point::new(self.x.min(other.x), self.y.min(other.y))
}
fn boundary_max(self, other: Self) -> Self {
Point::new(self.x.max(other.x), self.y.max(other.y))
}
fn volume<T>(self) -> T
where
T: From<Self::N> + Mul<Output = T>,
{
let x: T = self.x.abs().into();
let y: T = self.y.abs().into();
x * y
}
}