1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
use crate::geometry::{line_segment::LineSegment, Direction};
use itertools::Itertools;
use std::{
    convert::TryFrom,
    ops::{Add, AddAssign, Div, Mul, Sub, SubAssign},
};

#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
pub struct Point {
    pub x: i32,
    pub y: i32,
}

impl Point {
    #[inline]
    pub const fn new(x: i32, y: i32) -> Point {
        Point { x, y }
    }

    #[inline]
    pub fn manhattan(self) -> i32 {
        self.x.abs() + self.y.abs()
    }

    pub fn abs(&self) -> Point {
        Point {
            x: self.x.abs(),
            y: self.y.abs(),
        }
    }

    /// Rotate this point clockwise around the origin.
    ///
    /// For example:
    ///
    /// ```
    /// # use aoclib::geometry::Point;
    /// let mut point = Point::new(2, 1);
    /// point = point.rotate_right();
    /// assert_eq!(point, Point::new(1, -2));
    /// point = point.rotate_right();
    /// assert_eq!(point, Point::new(-2, -1));
    /// point = point.rotate_right();
    /// assert_eq!(point, Point::new(-1, 2));
    /// point = point.rotate_right();
    /// assert_eq!(point, Point::new(2, 1));
    /// ```
    #[inline]
    pub fn rotate_right(&self) -> Point {
        Point::new(self.y, -self.x)
    }

    /// Rotate this point counterclockwise around the origin.
    ///
    /// For example:
    ///
    /// ```
    /// # use aoclib::geometry::Point;
    /// let mut point = Point::new(2, 1);
    /// point = point.rotate_left();
    /// assert_eq!(point, Point::new(-1, 2));
    /// point = point.rotate_left();
    /// assert_eq!(point, Point::new(-2, -1));
    /// point = point.rotate_left();
    /// assert_eq!(point, Point::new(1, -2));
    /// point = point.rotate_left();
    /// assert_eq!(point, Point::new(2, 1));
    /// ```
    #[inline]
    pub fn rotate_left(&self) -> Point {
        Point::new(-self.y, self.x)
    }
}

impl From<(usize, usize)> for Point {
    #[inline]
    fn from((x, y): (usize, usize)) -> Self {
        Self::new(
            i32::try_from(x).unwrap_or(i32::MAX),
            i32::try_from(y).unwrap_or(i32::MAX),
        )
    }
}

impl AddAssign for Point {
    #[inline]
    fn add_assign(&mut self, other: Point) {
        self.x += other.x;
        self.y += other.y;
    }
}

impl Add for Point {
    type Output = Point;

    #[inline]
    fn add(mut self, other: Point) -> Point {
        self += other;
        self
    }
}

impl AddAssign<(i32, i32)> for Point {
    #[inline]
    fn add_assign(&mut self, (dx, dy): (i32, i32)) {
        self.x += dx;
        self.y += dy;
    }
}

impl Add<(i32, i32)> for Point {
    type Output = Point;

    #[inline]
    fn add(mut self, deltas: (i32, i32)) -> Point {
        self += deltas;
        self
    }
}
impl AddAssign<Direction> for Point {
    #[inline]
    fn add_assign(&mut self, direction: Direction) {
        *self += direction.deltas();
    }
}

impl Add<Direction> for Point {
    type Output = Point;

    #[inline]
    fn add(mut self, direction: Direction) -> Point {
        self += direction;
        self
    }
}

impl AddAssign<LineSegment> for Point {
    #[inline]
    fn add_assign(
        &mut self,
        LineSegment {
            direction,
            distance,
        }: LineSegment,
    ) {
        let (mut dx, mut dy) = direction.deltas();
        dx *= distance;
        dy *= distance;
        *self += (dx, dy);
    }
}

impl Add<LineSegment> for Point {
    type Output = Point;

    #[inline]
    fn add(mut self, line_segment: LineSegment) -> Point {
        self += line_segment;
        self
    }
}

impl SubAssign for Point {
    #[inline]
    fn sub_assign(&mut self, rhs: Self) {
        self.x -= rhs.x;
        self.y -= rhs.y;
    }
}

impl Sub for Point {
    type Output = Point;

    #[inline]
    fn sub(mut self, other: Point) -> Point {
        self -= other;
        self
    }
}

impl Mul<i32> for Point {
    type Output = Point;

    #[inline]
    fn mul(self, other: i32) -> Point {
        Point {
            x: self.x * other,
            y: self.y * other,
        }
    }
}

impl Div<i32> for Point {
    type Output = Point;

    #[inline]
    fn div(self, other: i32) -> Point {
        Point {
            x: self.x / other,
            y: self.y / other,
        }
    }
}

pub trait PointTrait: Copy + Eq {
    /// Numeric type backing this point
    type N;

    /// Return the manhattan distance of this point from the origin.
    fn manhattan(self) -> Self::N;

    /// Reduce all components of this point by 1.
    fn decr(self) -> Self;

    /// Increase all components of this point by 1.
    fn incr(self) -> Self;

    /// Generate all points inclusively bounded by `min` and `max`.
    fn inclusive_range(min: Self, max: Self) -> Box<dyn Iterator<Item = Self>>;

    /// Iterate over points adjacent to this point.
    ///
    /// This includes diagonals, and excludes the center.
    ///
    /// The implementation should always return a constant number of items, even if
    /// for simplicity it does not implement `ExactSizeIterator`.
    fn adjacent(self) -> Box<dyn Iterator<Item = Self>>
    where
        Self: 'static,
    {
        Box::new(
            Self::inclusive_range(self.decr(), self.incr()).filter(move |&point| point != self),
        )
    }

    /// Return the boundary minimum between `self` and `other`.
    ///
    /// This is defined as a new point with each component defined by `self.component.min(other.component)`.
    fn boundary_min(self, other: Self) -> Self;

    /// Return the boundary maximum between `self` and `other`.
    ///
    /// This is defined as a new point with each component defined by `self.component.max(other.component)`.
    fn boundary_max(self, other: Self) -> Self;

    /// Return the volume of the space defined between this point and the origin.
    fn volume<T>(self) -> T
    where
        T: From<Self::N> + Mul<Output = T>;
}

impl PointTrait for Point {
    type N = i32;

    fn manhattan(self) -> Self::N {
        <Self>::manhattan(self)
    }

    fn decr(self) -> Self {
        Point::new(self.x - 1, self.y - 1)
    }

    fn incr(self) -> Self {
        Point::new(self.x + 1, self.y + 1)
    }

    fn inclusive_range(min: Self, max: Self) -> Box<dyn Iterator<Item = Self>> {
        Box::new(
            (min.y..=max.y)
                .cartesian_product(min.x..=max.x)
                .map(|(y, x)| Point::new(x, y)),
        )
    }

    fn boundary_min(self, other: Self) -> Self {
        Point::new(self.x.min(other.x), self.y.min(other.y))
    }

    fn boundary_max(self, other: Self) -> Self {
        Point::new(self.x.max(other.x), self.y.max(other.y))
    }

    fn volume<T>(self) -> T
    where
        T: From<Self::N> + Mul<Output = T>,
    {
        let x: T = self.x.abs().into();
        let y: T = self.y.abs().into();
        x * y
    }
}