1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
use super::{a_star::AStarNode, tile::DisplayWidth, ContextInto, Edge, Traversable};
use crate::geometry::{Direction, Point};
use bitvec::bitvec;
use std::{
    collections::{BinaryHeap, HashMap, VecDeque},
    convert::TryFrom,
    fmt, hash,
    ops::{Index, IndexMut},
    str::FromStr,
};

#[cfg(feature = "map-render")]
use {
    super::{
        render::{n_pixels_for, pixel_size, render_point, Encoder},
        tile::ToRgb,
        Animation, Style,
    },
    std::{path::Path, time::Duration},
};

/// A Map keeps track of a tile grid.
///
/// Its coordinate system assumes that the origin is in the lower left,
/// for compatibility with [`Direction`].
///
/// While it is possible to clone a map, it is generally safe to assume that doing so
/// is a sign that there's a better approach possible.
///
/// ## Entry Points
///
/// - [`Map::new`] is most useful when the problem involves cartography.
/// - When a map is provided as the day's input, use [`Map::try_from`]
///
/// ## Panics
///
/// Several internal methods assume that the width and height of the map can be
/// represented in an `i32`. Very large maps may panic if that assumption is violated.
#[derive(Clone, Default)]
pub struct Map<Tile> {
    tiles: Vec<Tile>,
    width: usize,
    height: usize,
    offset: Point,
}

impl<Tile> Map<Tile> {
    /// Procedurally create a new `Map` from a function.
    pub fn procedural(width: usize, height: usize, procedure: impl Fn(Point) -> Tile) -> Map<Tile> {
        Self::procedural_offset(Point::default(), width, height, procedure)
    }

    /// Procedurally create a new `Map` from a function, with an offset origin.
    ///
    /// This offset can reduce dead space when the interesting part of a map is
    /// far from the origin.
    pub fn procedural_offset(
        offset: Point,
        width: usize,
        height: usize,
        procedure: impl Fn(Point) -> Tile,
    ) -> Map<Tile> {
        let area = width * height;
        let mut map = Map {
            tiles: Vec::with_capacity(area),
            width,
            height,
            offset,
        };
        for idx in 0..area {
            let point = map.index2point(idx);
            map.tiles.push(procedure(point));
        }
        map
    }

    /// Width of this map.
    #[inline]
    pub fn width(&self) -> usize {
        self.width
    }

    /// Height of this map.
    #[inline]
    pub fn height(&self) -> usize {
        self.height
    }

    /// Offset of the lower left corner of this map from `(0, 0)`.
    #[inline]
    pub fn offset(&self) -> Point {
        self.offset
    }

    /// Lowest x coordinate which is in bounds of this map.
    #[inline]
    pub fn low_x(&self) -> i32 {
        self.offset.x
    }

    /// Highest x coordinate which is in bounds of this map.
    ///
    /// Note that this is inclusive; use `..=` when using this to bound a range.
    #[inline]
    pub fn high_x(&self) -> i32 {
        self.offset.x + self.width as i32 - 1
    }

    /// Lowest y coordinate which is in bounds of this map.
    #[inline]
    pub fn low_y(&self) -> i32 {
        self.offset.y
    }

    /// Highest y coordinate which is in bounds of this map.
    ///
    /// Note that this is inclusive; use `..=` when using this to bound a range.
    #[inline]
    pub fn high_y(&self) -> i32 {
        self.offset.y + self.height as i32 - 1
    }

    /// The coordinates of the bottom left corner of this map.
    ///
    /// This is inclusive; it is a valid index into the map.
    #[inline]
    pub fn bottom_left(&self) -> Point {
        Point::new(self.low_x(), self.low_y())
    }

    /// The coordinates of the top left corner of this map.
    ///
    /// This is inclusive; it is a valid index into the map.
    #[inline]
    pub fn top_left(&self) -> Point {
        Point::new(self.low_x(), self.high_y())
    }

    /// The coordinates of the bottom right corner of this map.
    ///
    /// This is inclusive; it is a valid index into the map.
    #[inline]
    pub fn bottom_right(&self) -> Point {
        Point::new(self.high_x(), self.low_y())
    }

    /// The coordinates of the top right corner of this map.
    ///
    /// This is inclusive; it is a valid index into the map.
    #[inline]
    pub fn top_right(&self) -> Point {
        Point::new(self.high_x(), self.high_y())
    }

    /// Iterate over the points and tiles of this map.
    pub fn iter(&self) -> impl Iterator<Item = (Point, &Tile)> {
        let index2point = self.make_index2point();
        self.tiles
            .iter()
            .enumerate()
            .map(move |(idx, tile)| (index2point(idx), tile))
    }

    /// Iterate over the points of this tiles in this map, with mutable access to the tiles.
    pub fn iter_mut(&mut self) -> impl Iterator<Item = (Point, &mut Tile)> {
        let index2point = self.make_index2point();
        self.tiles
            .iter_mut()
            .enumerate()
            .map(move |(idx, tile)| (index2point(idx), tile))
    }

    /// Iterate over the points of this map without depending on the lifetime of `self`.
    pub fn points(&self) -> impl Iterator<Item = Point> {
        let index2point = self.make_index2point();
        (0..self.tiles.len()).map(index2point)
    }

    /// `true` when a point is legal within the bounds of this map.
    #[inline]
    pub fn in_bounds(&self, point: Point) -> bool {
        point.x >= self.low_x()
            && point.y >= self.low_y()
            && point.x <= self.high_x()
            && point.y <= self.high_y()
    }

    /// Make a function which returns `true` when the parameter is within the bounds of this map,
    /// without depending on the lifetime of `self`.
    pub fn make_in_bounds(&self) -> impl Fn(Point) -> bool {
        let low_x = self.low_x();
        let low_y = self.low_y();
        let high_x = self.high_x();
        let high_y = self.high_y();

        move |point| point.x >= low_x && point.y >= low_y && point.x <= high_x && point.y <= high_y
    }

    /// convert a 2d point into a 1d index into the tiles
    fn point2index(&self, x: usize, y: usize) -> usize {
        let x = (x as i32 - self.offset.x) as usize;
        let y = (y as i32 - self.offset.y) as usize;
        x + (y * self.width)
    }

    /// convert a 1d index in the tiles into a 2d point
    fn index2point(&self, idx: usize) -> Point {
        let unoffset: Point = (idx % self.width, idx / self.width).into();
        unoffset + self.offset
    }

    /// make a function which converts a 1d index in the tiles into a properly offset 2d point without borrowing self
    fn make_index2point(&self) -> impl Fn(usize) -> Point {
        let offset = self.offset;
        let width = self.width;

        move |idx| {
            let unoffset: Point = (idx % width, idx / width).into();
            unoffset + offset
        }
    }

    /// Return an iterator of all legal points adjacent to the given point.
    ///
    /// This iterator will return up to 8 elements; it includes diagonals.
    pub fn adjacencies(&self, point: Point) -> impl Iterator<Item = Point> {
        let in_bounds = self.make_in_bounds();
        self.orthogonal_adjacencies(point).chain(
            Direction::iter_diag()
                .map(move |(vertical, horizontal)| point + vertical + horizontal)
                .filter(move |&point| in_bounds(point)),
        )
    }

    /// Return an iterator of all legal points orthogonally adjacent to the given point,
    ///
    /// This iterator will return up to 4 elements; it does not include diagonals.
    pub fn orthogonal_adjacencies(&self, point: Point) -> impl Iterator<Item = Point> {
        let in_bounds = self.make_in_bounds();
        Direction::iter()
            .map(move |direction| point + direction)
            .filter(move |&point| in_bounds(point))
    }

    /// Return an iterator of all legal points adjacent to the given point,
    /// without depending on the lifetime of `self`.
    ///
    /// This iterator will return up to 8 elements; it includes diagonals.
    ///
    /// This introduces a bound that the `Tile` type must not contain any references.
    /// It is also slightly less efficient than [`self.adjacencies`]. In general,
    /// that function should be preferred unless there are lifetime conflicts.
    pub fn make_adjacencies(&self, point: Point) -> impl Iterator<Item = Point>
    where
        Tile: 'static,
    {
        let in_bounds = self.make_in_bounds();
        self.make_orthogonal_adjacencies(point).chain(
            Direction::iter_diag()
                .map(move |(vertical, horizontal)| point + vertical + horizontal)
                .filter(move |&point| in_bounds(point)),
        )
    }

    /// Return an iterator of all legal points orthogonally adjacent to the given point,
    /// without depending on the lifetime of `self`.
    ///
    /// This iterator will return up to 4 elements; it does not include diagonals.
    ///
    /// This introduces a bound that the `Tile` type must not contain any references.
    /// It is also slightly less efficient than [`self.orthogonal_adjacencies`]. In general,
    /// that function should be preferred unless there are lifetime conflicts.
    pub fn make_orthogonal_adjacencies(&self, point: Point) -> impl Iterator<Item = Point>
    where
        Tile: 'static,
    {
        let in_bounds = self.make_in_bounds();
        Direction::iter()
            .map(move |direction| point + direction)
            .filter(move |&point| in_bounds(point))
    }

    /// Return an iterator of all legal points arrived at by applying the given deltas to the origin.
    ///
    /// The origin point is always the first item in this iteration.
    pub fn project(&self, origin: Point, dx: i32, dy: i32) -> impl Iterator<Item = Point> {
        let in_bounds = self.make_in_bounds();
        std::iter::successors(Some(origin), move |&current| Some(current + (dx, dy)))
            .take_while(move |&point| in_bounds(point))
    }

    /// Create an iterator over the points on the edge of this map.
    ///
    /// Note that this iterator returns the points which are coordinates for each point on the edge,
    /// not the items of this map. You can use the [`Iterator::map`] combinator to map it to items from
    /// the map, if desired.
    ///
    /// The edge is traversed in increasing order. It is a [`std::iter::DoubleEndedIterator`], though, so
    /// it can be reversed if desired.
    ///
    /// The input `direction` indicates which edge should be traversed.
    pub fn edge(&self, direction: Direction) -> Edge {
        let (from, to, direction) = match direction {
            Direction::Left => (self.bottom_left(), self.top_left(), Direction::Up),
            Direction::Right => (self.bottom_right(), self.top_right(), Direction::Up),
            Direction::Down => (self.bottom_left(), self.bottom_right(), Direction::Right),
            Direction::Up => (self.top_left(), self.top_right(), Direction::Right),
        };

        Edge {
            from,
            to,
            direction,
            done: false,
        }
    }

    /// Translate all points in this map by a given amount.
    ///
    /// Completes in `O(1)`.
    ///
    /// ## Example
    ///
    /// Using the symbols `X` and `O` to indicate tiles, and `.` to indicate out-of-bounds space
    /// away from the origin, we start with this map:
    ///
    /// ```notrust
    /// XOOX
    /// OXOX
    /// ```
    ///
    /// After applying `translate(2, 1)`, we end with this map:
    ///
    /// ```notrust
    /// ..XOOX
    /// ..OXOX
    /// ......
    /// ```
    pub fn translate(&mut self, dx: i32, dy: i32) {
        self.offset.x += dx;
        self.offset.y += dy;
    }

    /// Convert the underlying tile type of a map.
    ///
    /// This produces a new map whose tiles are of a new underlying type.
    pub fn convert_tile_type<NewTile>(self) -> Map<NewTile>
    where
        Tile: Into<NewTile>,
    {
        let mut tiles = Vec::with_capacity(self.tiles.len());
        tiles.extend(self.tiles.into_iter().map(Into::into));
        Map {
            tiles,
            width: self.width,
            height: self.height,
            offset: self.offset,
        }
    }
}

impl<Tile: Clone> Map<Tile> {
    /// Reduce the map to that portion which is interesting according to some user-defined metric.
    ///
    /// This can be helpful when preparing visualizations.
    pub fn extract_interesting_region(
        &self,
        is_interesting: impl Fn(Point, &Tile) -> bool,
    ) -> Self {
        let mut min = Point::new(i32::MAX, i32::MAX);
        let mut max = Point::new(i32::MIN, i32::MIN);

        for (point, tile) in self.iter() {
            if is_interesting(point, tile) {
                min.x = min.x.min(point.x);
                min.y = min.y.min(point.y);
                max.x = max.x.max(point.x);
                max.y = max.y.max(point.y);
            }
        }

        let width = (max.x - min.x + 1) as usize;
        let height = (max.y - min.y + 1) as usize;
        let offset = min;

        Self::procedural_offset(offset, width, height, |point| self[point].clone())
    }
}

impl<Tile: Clone + Default> Map<Tile> {
    /// Create a new map of the specified dimensions.
    ///
    /// Its lower left corner is at `(0, 0)`.
    #[inline]
    pub fn new(width: usize, height: usize) -> Map<Tile> {
        Self::new_offset(Point::default(), width, height)
    }

    /// Create a new map of the specified dimensions.
    ///
    /// Its lower left corner is at `offset`.
    #[inline]
    pub fn new_offset(offset: Point, width: usize, height: usize) -> Map<Tile> {
        Map {
            tiles: vec![Tile::default(); width * height],
            width,
            height,
            offset,
        }
    }

    /// Create a copy of this map which has been flipped vertically: the axis of symmetry is horizontal.
    ///
    /// This does not adjust the offset; the corners remain where they previously were.
    pub fn flip_vertical(&self) -> Map<Tile> {
        let mut flipped = Map::new_offset(self.offset, self.width, self.height);

        for y in 0..(self.height as i32) {
            let flipped_y = self.high_y() - y;
            let non_flipped_y = self.low_y() + y;
            for x in self.low_x()..=self.high_x() {
                flipped[Point::new(x, flipped_y)] = self[Point::new(x, non_flipped_y)].clone();
            }
        }

        flipped
    }

    /// Create a copy of this map which has been flipped horizontally; the axis of symmetry is vertical.
    ///
    /// This does not adjust the offset; the corners remain where they previously were.
    pub fn flip_horizontal(&self) -> Map<Tile> {
        let mut flipped = Map::new_offset(self.offset, self.width, self.height);

        for y in self.low_y()..=self.high_y() {
            for x in 0..(self.width as i32) {
                let flipped_x = self.high_x() - x;
                let non_flipped_x = self.low_x() + x;
                flipped[Point::new(flipped_x, y)] = self[Point::new(non_flipped_x, y)].clone();
            }
        }

        flipped
    }

    /// Create a copy of this map which has been rotated counter-clockwise.
    ///
    /// This maintains the invariant that all points are in the positive quadrant, and assumes that
    /// the offset is `(0, 0)`. If necessary, apply `Self::translate` before and after this operation to
    /// produce an appropriate new offset.
    ///
    /// ## Panics
    ///
    /// If the offset is not `(0, 0)`.
    pub fn rotate_left(&self) -> Map<Tile> {
        assert_eq!(
            self.offset,
            Point::default(),
            "rotation is only legal when offset is `(0, 0)`"
        );

        let mut rotated = Map::new(self.height, self.width);

        let rotated_origin = rotated.bottom_right();
        for point in self.points() {
            let rotated_point = point.rotate_left() + rotated_origin;
            rotated[rotated_point] = self[point].clone();
        }

        rotated
    }

    /// Create a copy of this map which has been rotated clockwise.
    ///
    /// This maintains the invariant that all points are in the positive quadrant, and assumes that
    /// the offset is `(0, 0)`. If necessary, apply `Self::translate` before and after this operation to
    /// produce an appropriate new offset.
    ///
    /// ## Panics
    ///
    /// If the offset is not `(0, 0)`.
    pub fn rotate_right(&self) -> Map<Tile> {
        assert_eq!(
            self.offset,
            Point::default(),
            "rotation is only legal when offset is `(0, 0)`"
        );

        let mut rotated = Map::new(self.height, self.width);

        let rotated_origin = rotated.top_left();
        for point in self.points() {
            let rotated_point = point.rotate_right() + rotated_origin;
            rotated[rotated_point] = self[point].clone();
        }

        rotated
    }
}

impl<Tile> fmt::Debug for Map<Tile> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct(&format!("Map<{}>", std::any::type_name::<Tile>()))
            .field("width", &self.width)
            .field("height", &self.height)
            .field("offset", &self.offset)
            .field("tiles", &format_args!("[...; {}]", self.tiles.len()))
            .finish()
    }
}

impl<Tile: hash::Hash> hash::Hash for Map<Tile> {
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        self.tiles.hash(state);
        self.width.hash(state);
        self.height.hash(state);
        self.offset.hash(state);
    }
}

impl<Tile: PartialEq> PartialEq for Map<Tile> {
    fn eq(&self, other: &Self) -> bool {
        self.width == other.width
            && self.height == other.height
            && self.offset == other.offset
            && self.tiles == other.tiles
    }
}

impl<Tile: Eq> Eq for Map<Tile> {}

impl<Tile, Row> From<&[Row]> for Map<Tile>
where
    Tile: Clone,
    Row: AsRef<[Tile]>,
{
    /// Convert an input 2d array into a map.
    ///
    /// Note that the input array must already be arranged with the y axis
    /// as the outer array and the orientation such that `source[0][0]` is the
    /// lower left corner of the map.
    ///
    /// Panics if the input array is not rectangular.
    fn from(source: &[Row]) -> Map<Tile> {
        let height = source.len();
        if height == 0 {
            return Map {
                tiles: Vec::new(),
                width: 0,
                height: 0,
                offset: Point::default(),
            };
        }

        let width = source[0].as_ref().len();
        assert!(
            source
                .as_ref()
                .iter()
                .all(|row| row.as_ref().len() == width),
            "input must be rectangular"
        );

        let mut tiles = Vec::with_capacity(width * height);
        for row in source.iter() {
            for tile in row.as_ref().iter() {
                tiles.push(tile.clone());
            }
        }

        Map {
            tiles,
            width,
            height,
            offset: Point::default(),
        }
    }
}

impl<Tile> Map<Tile>
where
    Tile: Clone + DisplayWidth + FromStr,
    <Tile as FromStr>::Err: 'static + std::error::Error + Send + Sync,
{
    /// Try to convert the contents of a reader into a map.
    ///
    /// We don't actually `impl<T, R> TryFrom<R> for Map<T>` because there's a
    /// coherence conflict with the stdlib blanket impl
    ///
    /// ```rust,ignore
    /// impl<T, U> std::convert::TryFrom<U> for T where U: std::convert::Into<T>;
    /// ```
    ///
    /// Because there's a chance that `R` also implements `Into<Map<T>>`, we can't do it.
    ///
    /// That doesn't stop us from doing it here, and implementing the official trait for
    /// a few concrete types
    pub fn try_from<R>(input: R) -> Result<Self, MapConversionErr>
    where
        R: std::io::BufRead,
    {
        let mut arr = Vec::new();

        for line in input.lines() {
            let line = line?;

            let mut row = Vec::with_capacity(line.len() / Tile::DISPLAY_WIDTH);
            for chunk in Tile::chunks(&line) {
                row.push(Tile::from_str(&chunk).map_err(|err| {
                    MapConversionErr::TileConversion(Box::new(err), chunk.to_string())
                })?);
            }
            if !row.is_empty() {
                arr.push(row);
            }
        }

        if !arr.is_empty() {
            let width = arr[0].len();
            if !arr.iter().all(|row| row.len() == width) {
                return Err(MapConversionErr::NotRectangular);
            }
        }

        // shift the origin
        arr.reverse();

        Ok(Map::from(arr.as_slice()))
    }
}

impl<Tile> TryFrom<&str> for Map<Tile>
where
    Tile: Clone + DisplayWidth + FromStr,
    <Tile as FromStr>::Err: 'static + std::error::Error + Send + Sync,
{
    type Error = MapConversionErr;

    /// the input should be in natural graphical order:
    /// its first characters are the top left.
    fn try_from(input: &str) -> Result<Self, Self::Error> {
        <Self>::try_from(input.as_bytes())
    }
}

impl<Tile> TryFrom<std::fs::File> for Map<Tile>
where
    Tile: Clone + DisplayWidth + FromStr,
    <Tile as FromStr>::Err: 'static + std::error::Error + Send + Sync,
{
    type Error = MapConversionErr;

    /// the input should be in natural graphical order:
    /// its first characters are the top left.
    fn try_from(input: std::fs::File) -> Result<Self, Self::Error> {
        <Self>::try_from(std::io::BufReader::new(input))
    }
}

impl<Tile> TryFrom<&std::path::Path> for Map<Tile>
where
    Tile: Clone + DisplayWidth + FromStr,
    <Tile as FromStr>::Err: 'static + std::error::Error + Send + Sync,
{
    type Error = std::io::Error;

    /// the input should be in natural graphical order:
    /// its first characters are the top left.
    fn try_from(path: &std::path::Path) -> Result<Self, Self::Error> {
        <Self as TryFrom<std::fs::File>>::try_from(std::fs::File::open(path)?)
            .map_err(|e| std::io::Error::new(std::io::ErrorKind::Other, Box::new(e)))
    }
}

impl<Tile> Index<(usize, usize)> for Map<Tile> {
    type Output = Tile;

    fn index(&self, (x, y): (usize, usize)) -> &Tile {
        self.tiles.index(self.point2index(x, y))
    }
}

impl<Tile> Index<Point> for Map<Tile> {
    type Output = Tile;

    /// Panics if `point.x < 0 || point.y < 0`
    fn index(&self, point: Point) -> &Tile {
        assert!(
            point.x >= 0 && point.y >= 0,
            "point must be in the positive quadrant"
        );
        self.index((point.x as usize, point.y as usize))
    }
}

impl<Tile> IndexMut<(usize, usize)> for Map<Tile> {
    fn index_mut(&mut self, (x, y): (usize, usize)) -> &mut Tile {
        self.tiles.index_mut(self.point2index(x, y))
    }
}

impl<Tile> IndexMut<Point> for Map<Tile> {
    /// Panics if `point.x < 0 || point.y < 0`
    fn index_mut(&mut self, point: Point) -> &mut Tile {
        assert!(
            point.x >= 0 && point.y >= 0,
            "point must be in the positive quadrant"
        );
        self.index_mut((point.x as usize, point.y as usize))
    }
}

impl<Tile> fmt::Display for Map<Tile>
where
    Tile: fmt::Display + DisplayWidth,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        for y in (self.low_y()..=self.high_y()).rev() {
            for x in self.low_x()..=self.high_x() {
                write!(
                    f,
                    "{:width$}",
                    self.index(Point::new(x, y)),
                    width = Tile::DISPLAY_WIDTH
                )?;
            }
            writeln!(f)?;
        }
        Ok(())
    }
}

#[cfg(feature = "map-render")]
impl<Tile> Map<Tile>
where
    Tile: ToRgb,
{
    /// Render this map as a [`gif::Frame`].
    pub(crate) fn render_frame(&self, style: Style) -> gif::Frame {
        // 16 pixels per light: 3x3 with a 1px margin
        // 3 subpixels per pixel; 1 each for r, g, b
        let width = self.width;
        let mut subpixels = vec![0; n_pixels_for(self.width, self.height) * 3];

        for (point, tile) in self.iter() {
            render_point(point - self.offset, tile, &mut subpixels, width, style)
        }

        gif::Frame::from_rgb(pixel_size(width), pixel_size(self.height), &subpixels)
    }

    fn make_gif_encoder(&self, output: &Path) -> Result<Encoder, RenderError> {
        let output = std::fs::File::create(output)?;
        let output = std::io::BufWriter::new(output);

        gif::Encoder::new(output, pixel_size(self.width), pixel_size(self.height), &[])
            .map_err(Into::into)
    }

    /// Render this map as a still image into an output file.
    ///
    /// _Depends on the `map-render` feature._
    ///
    /// The output image is a gif under all circumstances. It is useful, though
    /// unenforced, that the output file name matches `*.gif`.
    pub fn render(&self, output: &Path, style: Style) -> Result<(), RenderError> {
        let mut output = self.make_gif_encoder(output)?;
        output.write_frame(&self.render_frame(style))?;
        Ok(())
    }

    /// Prepare an animation from this map.
    ///
    /// _Depends on the `map-render` feature._
    ///
    /// This returns an `Animation` object which can have frames added to it.
    /// This method does not automatically render this `Map` frame to the `Animation`.
    /// This enables you to set up the animation ahead of time with dummy data.
    ///
    /// The major constraint is that all subsequent maps added as frames must
    /// have dimensions identical to this Map's.
    ///
    /// The animation will loop infinitely, displaying each frame for
    /// `frame_duration`.
    pub fn prepare_animation(
        &self,
        output: &Path,
        frame_duration: Duration,
        style: Style,
    ) -> Result<Animation, RenderError> {
        let encoder = self.make_gif_encoder(output)?;
        Animation::new(encoder, frame_duration, style).map_err(Into::into)
    }
}

/// An error which can arise during rendering.
///
/// _Depends on the `map-render` feature._
#[cfg(feature = "map-render")]
#[derive(Debug, thiserror::Error)]
pub enum RenderError {
    #[error(transparent)]
    Io(#[from] std::io::Error),
    #[error("encoding gif")]
    Gif(#[from] gif::EncodingError),
}

impl<Tile> Map<Tile>
where
    Tile: Clone + ContextInto<Traversable, Context = ()>,
{
    /// Visit every non-obstructed tile reachable from the initial point.
    ///
    /// If the visitor ever returns true, processing halts and no further
    /// points are visited.
    pub fn reachable_from(&self, point: Point, visit: impl FnMut(Point, &Tile) -> bool) {
        self.reachable_from_ctx(&(), point, visit)
    }

    /// navigate between the given points using A*
    // https://en.wikipedia.org/wiki/A*_search_algorithm#Pseudocode
    pub fn navigate(&self, from: Point, to: Point) -> Option<Vec<Direction>> {
        self.navigate_ctx(&(), from, to)
    }
}

impl<Tile: Clone + ContextInto<Traversable>> Map<Tile> {
    /// Visit every non-obstructed tile reachable from the initial point.
    ///
    /// If the visitor ever returns true, processing halts and no further
    /// points are visited.
    pub fn reachable_from_ctx(
        &self,
        context: &<Tile as ContextInto<Traversable>>::Context,
        point: Point,
        mut visit: impl FnMut(Point, &Tile) -> bool,
    ) {
        let mut visited = bitvec!(0; self.tiles.len());
        let mut queue = VecDeque::new();
        queue.push_back(point);

        let idx = |point: Point| self.point2index(point.x as usize, point.y as usize);

        while let Some(point) = queue.pop_front() {
            // we may have scheduled a single point more than once via alternate paths;
            // we should only actually visit once.
            let index = idx(point);
            if visited[index] {
                continue;
            }

            visited.set(index, true);
            let traversable = self[point].clone().ctx_into(point, context);
            if traversable == Traversable::Obstructed {
                continue;
            }

            if visit(point, self.index(point)) {
                break;
            }

            if traversable == Traversable::Free {
                for neighbor in self.orthogonal_adjacencies(point) {
                    if !visited[idx(neighbor)] {
                        queue.push_back(neighbor);
                    }
                }
            }
        }
    }

    /// navigate between the given points using A*
    // https://en.wikipedia.org/wiki/A*_search_algorithm#Pseudocode
    pub fn navigate_ctx(
        &self,
        context: &<Tile as ContextInto<Traversable>>::Context,
        from: Point,
        to: Point,
    ) -> Option<Vec<Direction>> {
        let mut open_set = BinaryHeap::new();
        open_set.push(AStarNode {
            cost: 0,
            position: from,
        });

        // key: node
        // value: node preceding it on the cheapest known path from start
        let mut came_from = HashMap::new();

        // gscore
        // key: position
        // value: cost of cheapest path from start to node
        let mut cheapest_path_cost = HashMap::new();
        cheapest_path_cost.insert(from, 0_u32);

        // fscore
        // key: position
        // value: best guess as to total cost from here to finish
        let mut total_cost_guess = HashMap::new();
        total_cost_guess.insert(from, (to - from).manhattan() as u32);

        while let Some(AStarNode { cost, position }) = open_set.pop() {
            if position == to {
                let mut current = position;
                let mut path = Vec::new();
                while let Some((direction, predecessor)) = came_from.remove(&current) {
                    current = predecessor;
                    path.push(direction);
                }
                debug_assert!(path.len() as i32 >= (to - from).manhattan());
                path.reverse();
                return Some(path);
            }

            for direction in Direction::iter() {
                let neighbor = position + direction;
                if !self.in_bounds(neighbor) {
                    continue;
                }
                match self[neighbor].clone().ctx_into(neighbor, context) {
                    Traversable::Obstructed => {}
                    Traversable::Free | Traversable::Halt => {
                        let tentative_cheapest_path_cost = cost + 1;
                        if tentative_cheapest_path_cost
                            < cheapest_path_cost
                                .get(&neighbor)
                                .cloned()
                                .unwrap_or(u32::MAX)
                        {
                            // this path to the neighbor is better than any previous one
                            came_from.insert(neighbor, (direction, position));
                            cheapest_path_cost.insert(neighbor, tentative_cheapest_path_cost);
                            total_cost_guess.insert(
                                neighbor,
                                tentative_cheapest_path_cost + (to - neighbor).manhattan() as u32,
                            );

                            // this thing with the iterator is not very efficient, but for some weird reason BinaryHeap
                            // doesn't have a .contains method; see
                            // https://github.com/rust-lang/rust/issues/66724
                            if !open_set.iter().any(|elem| elem.position == neighbor) {
                                open_set.push(AStarNode {
                                    cost: tentative_cheapest_path_cost,
                                    position: neighbor,
                                });
                            }
                        }
                    }
                }
            }
        }

        None
    }
}

#[derive(Debug, thiserror::Error)]
pub enum MapConversionErr {
    #[error("converting tile from {1:?}")]
    TileConversion(
        #[source] Box<dyn 'static + std::error::Error + Send + Sync>,
        String,
    ),
    #[error("map must be rectangular")]
    NotRectangular,
    #[error(transparent)]
    Io(#[from] std::io::Error),
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::geometry::map::tile::Digit;
    use std::{collections::HashSet, convert::TryInto};

    #[test]
    fn test_procedural() {
        let map = Map::procedural(2, 2, |point| point.x + point.y);
        assert_eq!(map.width, 2);
        assert_eq!(map.height, 2);
        assert_eq!(map.offset, Point::default());
        assert_eq!(map.tiles, vec![0, 1, 1, 2]);
        assert!(map.iter().all(|(point, &tile)| point.x + point.y == tile));
    }

    #[test]
    fn test_procedural_offset() {
        let map = Map::procedural_offset(Point::new(2, 1), 2, 2, |point| point.x + point.y);
        assert_eq!(map.width, 2);
        assert_eq!(map.height, 2);
        assert_eq!(map.offset, Point::new(2, 1));
        assert_eq!(map.tiles, vec![3, 4, 4, 5]);
        assert!(map.iter().all(|(point, &tile)| point.x + point.y == tile));
    }

    #[test]
    fn test_point_index_conversion_no_offset() {
        const EDGE: usize = 256;
        const AREA: usize = EDGE * EDGE;

        let map = Map::<()>::new(EDGE, EDGE);
        let mut emitted_points = HashSet::new();
        for idx in 0..AREA {
            let point = map.index2point(idx);
            assert!(
                emitted_points.insert(point),
                "no duplicate point should ever be emitted"
            );
            assert_eq!(idx, map.point2index(point.x as usize, point.y as usize));
        }
    }

    #[test]
    fn test_point_index_conversion_with_offset() {
        const EDGE: usize = 256;
        const AREA: usize = EDGE * EDGE;

        let map = Map::<()>::new_offset(Point::new(3, 2), EDGE, EDGE);
        let mut emitted_points = HashSet::new();
        for idx in 0..AREA {
            let point = map.index2point(idx);
            assert!(
                emitted_points.insert(point),
                "no duplicate point should ever be emitted"
            );
            assert_eq!(idx, map.point2index(point.x as usize, point.y as usize));
        }
    }

    #[test]
    fn test_boundaries_no_offset() {
        const EDGE: usize = 256;

        let map = Map::<()>::new(EDGE, EDGE);

        assert_eq!(map.low_x(), 0);
        assert_eq!(map.high_x(), 255);
        assert_eq!(map.low_y(), 0);
        assert_eq!(map.high_y(), 255);
    }

    #[test]
    fn test_boundaries_with_offset() {
        const EDGE: usize = 256;

        let map = Map::<()>::new_offset(Point::new(3, 2), EDGE, EDGE);

        assert_eq!(map.low_x(), 3);
        assert_eq!(map.high_x(), EDGE as i32 + 3 - 1);
        assert_eq!(map.low_y(), 2);
        assert_eq!(map.high_y(), EDGE as i32 + 2 - 1);
    }

    #[test]
    fn test_translate() {
        let mut map = Map::procedural(2, 2, |point| point.x + point.y);
        map.translate(2, 1);

        assert_eq!(map.width, 2);
        assert_eq!(map.height, 2);
        assert_eq!(map.offset, Point::new(2, 1));
        assert_eq!(map.tiles, vec![0, 1, 1, 2]);
        assert!(map.iter().all(|(point, &tile)| {
            let point = point - map.offset;
            point.x + point.y == tile
        }));
    }

    #[test]
    fn test_extract_interesting_region() {
        let map = Map::procedural(2, 2, |point| point.x + point.y);
        let map = map.extract_interesting_region(|point, _tile| point.x != 0);

        assert_eq!(map.width, 1);
        assert_eq!(map.height, 2);
        assert_eq!(map.offset, Point::new(1, 0));
        assert_eq!(map.tiles, vec![1, 2]);
    }

    #[test]
    fn test_flip_vertical() {
        let map = Map::procedural_offset(Point::new(3, 2), 2, 3, |point| point.x + point.y);
        let bottom_left = map.bottom_left();
        let top_right = map.top_right();
        assert_eq!(map.tiles, vec![5, 6, 6, 7, 7, 8]);

        let flip_map = map.flip_vertical();
        assert_eq!(flip_map.bottom_left(), bottom_left);
        assert_eq!(flip_map.top_right(), top_right);

        assert_eq!(flip_map.width, 2);
        assert_eq!(flip_map.height, 3);
        assert_eq!(flip_map.tiles, vec![7, 8, 6, 7, 5, 6]);

        assert_eq!(flip_map.flip_vertical(), map);
    }

    #[test]
    fn test_flip_horizontal() {
        let map = Map::procedural_offset(Point::new(3, 2), 2, 3, |point| point.x + point.y);
        let bottom_left = map.bottom_left();
        let top_right = map.top_right();
        assert_eq!(map.tiles, vec![5, 6, 6, 7, 7, 8]);

        let flip_map = map.flip_horizontal();
        assert_eq!(flip_map.bottom_left(), bottom_left);
        assert_eq!(flip_map.top_right(), top_right);

        assert_eq!(flip_map.width, 2);
        assert_eq!(flip_map.height, 3);
        assert_eq!(flip_map.tiles, vec![6, 5, 7, 6, 8, 7]);

        assert_eq!(flip_map.flip_horizontal(), map);
    }

    #[test]
    fn test_rotate_left() {
        let map = Map::<Digit>::procedural(3, 2, |point| {
            ((point.x + point.y) as u8).try_into().unwrap()
        });
        assert_eq!(
            map.tiles
                .iter()
                .map(|&digit| digit.into())
                .collect::<Vec<u8>>(),
            vec![0, 1, 2, 1, 2, 3]
        );

        let rotated_map = map.rotate_left();

        println!("{}", map);
        println!("{}", rotated_map);

        assert_eq!(rotated_map.width, 2);
        assert_eq!(rotated_map.height, 3);
        assert_eq!(rotated_map.offset, Point::default());
        assert_eq!(
            rotated_map
                .tiles
                .iter()
                .map(|&digit| digit.into())
                .collect::<Vec<u8>>(),
            vec![1, 0, 2, 1, 3, 2],
        );

        assert_eq!(rotated_map.rotate_right(), map);
    }

    #[test]
    fn test_rotate_right() {
        let map = Map::<Digit>::procedural(3, 2, |point| {
            ((point.x + point.y) as u8).try_into().unwrap()
        });
        assert_eq!(
            map.tiles
                .iter()
                .map(|&digit| digit.into())
                .collect::<Vec<u8>>(),
            vec![0, 1, 2, 1, 2, 3]
        );

        let rotated_map = map.rotate_right();

        println!("{}", map);
        println!("{}", rotated_map);

        assert_eq!(rotated_map.width, 2);
        assert_eq!(rotated_map.height, 3);
        assert_eq!(rotated_map.offset, Point::default());
        assert_eq!(
            rotated_map
                .tiles
                .iter()
                .map(|&digit| digit.into())
                .collect::<Vec<u8>>(),
            vec![2, 3, 1, 2, 0, 1],
        );

        assert_eq!(rotated_map.rotate_left(), map);
    }
}